kjfsfe

A New Approach to Surgical Gowns

1. Introduction

As a result of the Covid-19 epidemic, the importance given to hygiene has increased in the world, thus the necessity of personal protective equipment (PPE) has come to the fore. The type of PPE that should be used in the health field varies depending on three factors:

  • the body part at risk (e.g. face, legs, hands) and type of exposure (e.g. pressure, liquids, droplets, aerosols)
  • The amount of exposure to blood or body fluid (i.e., large volumes of fluid with a few drops)
  • Possible duration of exposure (i.e. short exposure such as initiation of an intravenous route or long exposure such as cardiothoracic surgery)

An important part of PPE in the field of health; it forms surgical gowns that are worn by healthcare professionals to prevent the transfer of blood, body fluids and other potentially infectious materials and to help maintain the integrity of the sterile field. These gowns are the second most frequently used PPE item after gloves in this area .

Surgical gowns are defined by the United States (USA) Food and Drug Administration (FDA) as: “Equipment intended to be worn by operating room staff during surgical procedures to protect both the surgical patient and operating room staff from the transfer of microorganisms and bodily fluids” [5]. Surgical gowns are the most important part of the surgical clothing system that covers a large part of the body, and besides protection, they also affect the comfort condition of the healthcare personnel and thus the operational success

Surgical gowns have been used by healthcare professionals for more than a century. Although these gowns are considered the leading item of protective equipment today, surgical gowns and clothing were not used regularly in the surgical profession until the 1800s. At that time, surgeons performed their operations in an auditorium or amphitheater-style rooms, in rooms where the operation would be performed in the center and where the audience would sit in the surrounding seats. Surgeons typically wore street clothes and sometimes wore something similar to a butcher’s apron to protect their clothes from stains. In fact, surgeons in those years typically performed surgeries with bare hands and non-sterile surgical instruments and supplies. In the late 1800s, after Joseph Lister’s pioneering research, the carbolic acid solution was used to sterilize surgical instruments, surgical cuts and dressings to prevent gangrene and other infections. In 1867 he published numerous articles on “Antiseptic Surgery Practice” describing these procedures and also encouraged surgeons to wear clean gloves and wash their hands before and after surgery. However; surgical gowns and other protective equipment did not see wide use until much later. Advances in the knowledge of antisepsis and infection until the 1940s led to the use of antiseptic dressings and surgical gowns. In 1952, when William C. Beck warned the surgical circles that these gowns lost their bacterial barrier property while wet, researches on developing materials in this area increased.

Surgical gowns used from the late 19th century until the 1970s; It is made from a loosely woven, readily permeable, reusable fabric known as cotton muslin fabric. Three types of fabric were commonly used at that time. All-cotton muslin (140 thread muslin); it is a soft, absorbent, draped and highly porous, loosely woven fabric. Because it is easily permeable, this material does not have any liquid resistance properties. It also tends to wear easily and create lint. It is a blended layered (180 thread) polyester and cotton blend fabric that has a permanent print quality but otherwise performs similar to muslin. Finally, it is the first reusable fabric with a water-repellent chemical coating, a tightly woven cotton or polyester/cotton blend fabric (with 175–280 threads). However, with repeated washing cycles, it has been shown that resistance to liquid penetration is reduced in this fabric.

While initially worn surgical garments were white to emphasize cleanliness; the combination of bright lights, white rooms, and white clothing caused eye strain on surgeons and staff. For this reason, the use of white surgical gowns and other clothing used in the early days has been abandoned and hospitals have started to use various shades of green and blue surgical clothing. As surgical procedures progressed during the twentieth century, surgical garments saw more use and improvement, but the biggest increase in surgical garment use did not occur until the 1980s. The Occupational Safety and Health Administration (OSHA) [8] introduced a rule in 1991 to minimize the risk of healthcare workers acquiring blood-borne pathogens. This rule required employers to provide appropriate personal protective equipment (PPE) to healthcare workers. It is stated that the AIDS epidemic has a lot to do with this .

2. Performance features required in surgical gowns

Surgical gowns are worn by doctors and nurses in the operating room to fulfill a dual function of preventing the transfer of microorganisms and body fluids from the surgical staff to the patient as well as from patient to staff [10]. These gowns, which are used to protect the surgical team, must have some protective properties. Most of the performance requirements for surgical gowns are clearly stated in the standards. Performance characteristics required from these aprons can be listed as follows:

  • It must be resistant to the penetration of blood and other body fluids as required by its intended use (gown materials should contain protective barriers to minimize the passage of microorganisms, particles and fluids),
  • It should be designed considering liquid repellency, liquid impermeability, air permeability and similar properties,
  • It must be resistant to tears, punctures and abrasionsIt must have an acceptable level of quality (i.e. no holes, tears, etc. in the garment),
  • It must be made of materials suitable for the sterilization method/methods (e.g. radiation, steam and ethylene oxide),
  • It must be resistant to fire (i.e. gowns chosen for use must be consistent with accepted flammability standards that will provide the safest environment for patients and healthcare professionals),
  • It should contribute to maintaining the user’s desired body temperature, that is, have the ability to maintain an isothermal environment for the user,
  • It should not generate dust and fly or allow them to pass through,It should fit tightly but does not restrict movement.
  • In general, it should be free from toxic ingredients and allergens,
  • It should be soft and flexible, light, which does not cause discomfort during use,
  • It must be large enough to allow full closure at the back,
  • It should be of sufficient arm length to prevent exposure of the sleeve outside of the sterile glove,
  • It should have an appropriate cost–benefit ratio, that is, it should not be a priority in the cost selection process,
  • It should also meet some ergonomic requirements. It should be comfortable and functional, have sufficient freedom of movement and adapts to changes in heat and sweat when necessary,
  • Surgical gowns should be ankle-long, the design of the collars and straps should not disturb the person wearing the garment and should not restrict the person’s movements,
  • It should provide high wearing comfort, should not lose its protection performance as a result of repeated washing and sterilization processes,
  • As hospitals only stock in limited quantities, they should be designed to fit a variety of body shapes and sizes with a limited size range,
  • It should help to protect the sterile area required in the operating room
  • It should be easy to donning and doffing without contamination,Whether single or reusable, the garment must be durable enough to maintain its intended useful life,
  • The integrity of the garment must be preserved .

Each of these characteristics can be measured in one or more “standardized” tests. These standardized tests have been developed by various organizations such as the American Society for Testing and Materials (ASTM; e.g. ASTM F-1670, ASTM F-1671), the American Textile Colorists and Chemists Association, the Health Industry Manufacturers Association, and the National Fire Prevention Association.

For the structural requirements of surgical gowns, structural analysis is performed first to evaluate the design features of existing products and to characterize the market. Comfort issues with product design are particularly alarming, as comfort is a critical product requirement for surgical gowns. While comfort is somewhat dependent on the permeability and flexibility of the fabric, it has a design effect. Researches done; emphasizes the sustainability of reusable gowns as they are more cost-effective throughout their life cycle in terms of production costs, waste and carbon footprints.

3. Design analysis of surgical gowns

Today, different gowns are designed to handle different surgeries. Figure 1 shows the front and the back of a simple disposable surgical gown. The model and cost of aprons vary depending on the amount of protection provided.

1. Introduction

As a result of the Covid-19 epidemic, the importance given to hygiene has increased in the world, thus the necessity of personal protective equipment (PPE) has come to the fore. The type of PPE that should be used in the health field varies depending on three factors:

  • the body part at risk (e.g. face, legs, hands) and type of exposure (e.g. pressure, liquids, droplets, aerosols)
  • The amount of exposure to blood or body fluid (i.e., large volumes of fluid with a few drops)
  • Possible duration of exposure (i.e. short exposure such as initiation of an intravenous route or long exposure such as cardiothoracic surgery)

An important part of PPE in the field of health; it forms surgical gowns that are worn by healthcare professionals to prevent the transfer of blood, body fluids and other potentially infectious materials and to help maintain the integrity of the sterile field. These gowns are the second most frequently used PPE item after gloves in this area .

Surgical gowns are defined by the United States (USA) Food and Drug Administration (FDA) as: “Equipment intended to be worn by operating room staff during surgical procedures to protect both the surgical patient and operating room staff from the transfer of microorganisms and bodily fluids” [5]. Surgical gowns are the most important part of the surgical clothing system that covers a large part of the body, and besides protection, they also affect the comfort condition of the healthcare personnel and thus the operational success

Surgical gowns have been used by healthcare professionals for more than a century. Although these gowns are considered the leading item of protective equipment today, surgical gowns and clothing were not used regularly in the surgical profession until the 1800s. At that time, surgeons performed their operations in an auditorium or amphitheater-style rooms, in rooms where the operation would be performed in the center and where the audience would sit in the surrounding seats. Surgeons typically wore street clothes and sometimes wore something similar to a butcher’s apron to protect their clothes from stains. In fact, surgeons in those years typically performed surgeries with bare hands and non-sterile surgical instruments and supplies. In the late 1800s, after Joseph Lister’s pioneering research, the carbolic acid solution was used to sterilize surgical instruments, surgical cuts and dressings to prevent gangrene and other infections. In 1867 he published numerous articles on “Antiseptic Surgery Practice” describing these procedures and also encouraged surgeons to wear clean gloves and wash their hands before and after surgery. However; surgical gowns and other protective equipment did not see wide use until much later. Advances in the knowledge of antisepsis and infection until the 1940s led to the use of antiseptic dressings and surgical gowns. In 1952, when William C. Beck warned the surgical circles that these gowns lost their bacterial barrier property while wet, researches on developing materials in this area increased.

Surgical gowns used from the late 19th century until the 1970s; It is made from a loosely woven, readily permeable, reusable fabric known as cotton muslin fabric. Three types of fabric were commonly used at that time. All-cotton muslin (140 thread muslin); it is a soft, absorbent, draped and highly porous, loosely woven fabric. Because it is easily permeable, this material does not have any liquid resistance properties. It also tends to wear easily and create lint. It is a blended layered (180 thread) polyester and cotton blend fabric that has a permanent print quality but otherwise performs similar to muslin. Finally, it is the first reusable fabric with a water-repellent chemical coating, a tightly woven cotton or polyester/cotton blend fabric (with 175–280 threads). However, with repeated washing cycles, it has been shown that resistance to liquid penetration is reduced in this fabric.

While initially worn surgical garments were white to emphasize cleanliness; the combination of bright lights, white rooms, and white clothing caused eye strain on surgeons and staff. For this reason, the use of white surgical gowns and other clothing used in the early days has been abandoned and hospitals have started to use various shades of green and blue surgical clothing. As surgical procedures progressed during the twentieth century, surgical garments saw more use and improvement, but the biggest increase in surgical garment use did not occur until the 1980s. The Occupational Safety and Health Administration (OSHA) [8] introduced a rule in 1991 to minimize the risk of healthcare workers acquiring blood-borne pathogens. This rule required employers to provide appropriate personal protective equipment (PPE) to healthcare workers. It is stated that the AIDS epidemic has a lot to do with this .

2. Performance features required in surgical gowns

Surgical gowns are worn by doctors and nurses in the operating room to fulfill a dual function of preventing the transfer of microorganisms and body fluids from the surgical staff to the patient as well as from patient to staff [10]. These gowns, which are used to protect the surgical team, must have some protective properties. Most of the performance requirements for surgical gowns are clearly stated in the standards. Performance characteristics required from these aprons can be listed as follows:

  • It must be resistant to the penetration of blood and other body fluids as required by its intended use (gown materials should contain protective barriers to minimize the passage of microorganisms, particles and fluids),
  • It should be designed considering liquid repellency, liquid impermeability, air permeability and similar properties,
  • It must be resistant to tears, punctures and abrasionsIt must have an acceptable level of quality (i.e. no holes, tears, etc. in the garment),
  • It must be made of materials suitable for the sterilization method/methods (e.g. radiation, steam and ethylene oxide),
  • It must be resistant to fire (i.e. gowns chosen for use must be consistent with accepted flammability standards that will provide the safest environment for patients and healthcare professionals),
  • It should contribute to maintaining the user’s desired body temperature, that is, have the ability to maintain an isothermal environment for the user,
  • It should not generate dust and fly or allow them to pass through,It should fit tightly but does not restrict movement.
  • In general, it should be free from toxic ingredients and allergens,
  • It should be soft and flexible, light, which does not cause discomfort during use,
  • It must be large enough to allow full closure at the back,
  • It should be of sufficient arm length to prevent exposure of the sleeve outside of the sterile glove,
  • It should have an appropriate cost–benefit ratio, that is, it should not be a priority in the cost selection process,
  • It should also meet some ergonomic requirements. It should be comfortable and functional, have sufficient freedom of movement and adapts to changes in heat and sweat when necessary,
  • Surgical gowns should be ankle-long, the design of the collars and straps should not disturb the person wearing the garment and should not restrict the person’s movements,
  • It should provide high wearing comfort, should not lose its protection performance as a result of repeated washing and sterilization processes,
  • As hospitals only stock in limited quantities, they should be designed to fit a variety of body shapes and sizes with a limited size range,
  • It should help to protect the sterile area required in the operating room
  • It should be easy to donning and doffing without contamination,Whether single or reusable, the garment must be durable enough to maintain its intended useful life,
  • The integrity of the garment must be preserved .

Each of these characteristics can be measured in one or more “standardized” tests. These standardized tests have been developed by various organizations such as the American Society for Testing and Materials (ASTM; e.g. ASTM F-1670, ASTM F-1671), the American Textile Colorists and Chemists Association, the Health Industry Manufacturers Association, and the National Fire Prevention Association.

For the structural requirements of surgical gowns, structural analysis is performed first to evaluate the design features of existing products and to characterize the market. Comfort issues with product design are particularly alarming, as comfort is a critical product requirement for surgical gowns. While comfort is somewhat dependent on the permeability and flexibility of the fabric, it has a design effect. Researches done; emphasizes the sustainability of reusable gowns as they are more cost-effective throughout their life cycle in terms of production costs, waste and carbon footprints.

3. Design analysis of surgical gowns

Today, different gowns are designed to handle different surgeries. Figure 1 shows the front and the back of a simple disposable surgical gown. The model and cost of aprons vary depending on the amount of protection provided.

1. Introduction

As a result of the Covid-19 epidemic, the importance given to hygiene has increased in the world, thus the necessity of personal protective equipment (PPE) has come to the fore. The type of PPE that should be used in the health field varies depending on three factors:

  • the body part at risk (e.g. face, legs, hands) and type of exposure (e.g. pressure, liquids, droplets, aerosols)
  • The amount of exposure to blood or body fluid (i.e., large volumes of fluid with a few drops)
  • Possible duration of exposure (i.e. short exposure such as initiation of an intravenous route or long exposure such as cardiothoracic surgery)
  • the body part at risk (e.g. face, legs, hands) and type of exposure (e.g. pressure, liquids, droplets, aerosols)
  • The amount of exposure to blood or body fluid (i.e., large volumes of fluid with a few drops)
  • Possible duration of exposure (i.e. short exposure such as initiation of an intravenous route or long exposure such as cardiothoracic surgery)
  • An important part of PPE in the field of health; it forms surgical gowns that are worn by healthcare professionals to prevent the transfer of blood, body fluids and other potentially infectious materials and to help maintain the integrity of the sterile field. These gowns are the second most frequently used PPE item after gloves in this area .

    Surgical gowns are defined by the United States (USA) Food and Drug Administration (FDA) as: “Equipment intended to be worn by operating room staff during surgical procedures to protect both the surgical patient and operating room staff from the transfer of microorganisms and bodily fluids” [5]. Surgical gowns are the most important part of the surgical clothing system that covers a large part of the body, and besides protection, they also affect the comfort condition of the healthcare personnel and thus the operational success

    Surgical gowns have been used by healthcare professionals for more than a century. Although these gowns are considered the leading item of protective equipment today, surgical gowns and clothing were not used regularly in the surgical profession until the 1800s. At that time, surgeons performed their operations in an auditorium or amphitheater-style rooms, in rooms where the operation would be performed in the center and where the audience would sit in the surrounding seats. Surgeons typically wore street clothes and sometimes wore something similar to a butcher’s apron to protect their clothes from stains. In fact, surgeons in those years typically performed surgeries with bare hands and non-sterile surgical instruments and supplies. In the late 1800s, after Joseph Lister’s pioneering research, the carbolic acid solution was used to sterilize surgical instruments, surgical cuts and dressings to prevent gangrene and other infections. In 1867 he published numerous articles on “Antiseptic Surgery Practice” describing these procedures and also encouraged surgeons to wear clean gloves and wash their hands before and after surgery. However; surgical gowns and other protective equipment did not see wide use until much later. Advances in the knowledge of antisepsis and infection until the 1940s led to the use of antiseptic dressings and surgical gowns. In 1952, when William C. Beck warned the surgical circles that these gowns lost their bacterial barrier property while wet, researches on developing materials in this area increased.

    Surgical gowns used from the late 19th century until the 1970s; It is made from a loosely woven, readily permeable, reusable fabric known as cotton muslin fabric. Three types of fabric were commonly used at that time. All-cotton muslin (140 thread muslin); it is a soft, absorbent, draped and highly porous, loosely woven fabric. Because it is easily permeable, this material does not have any liquid resistance properties. It also tends to wear easily and create lint. It is a blended layered (180 thread) polyester and cotton blend fabric that has a permanent print quality but otherwise performs similar to muslin. Finally, it is the first reusable fabric with a water-repellent chemical coating, a tightly woven cotton or polyester/cotton blend fabric (with 175–280 threads). However, with repeated washing cycles, it has been shown that resistance to liquid penetration is reduced in this fabric.

    While initially worn surgical garments were white to emphasize cleanliness; the combination of bright lights, white rooms, and white clothing caused eye strain on surgeons and staff. For this reason, the use of white surgical gowns and other clothing used in the early days has been abandoned and hospitals have started to use various shades of green and blue surgical clothing. As surgical procedures progressed during the twentieth century, surgical garments saw more use and improvement, but the biggest increase in surgical garment use did not occur until the 1980s. The Occupational Safety and Health Administration (OSHA) [8] introduced a rule in 1991 to minimize the risk of healthcare workers acquiring blood-borne pathogens. This rule required employers to provide appropriate personal protective equipment (PPE) to healthcare workers. It is stated that the AIDS epidemic has a lot to do with this .

    2. Performance features required in surgical gowns

    Surgical gowns are worn by doctors and nurses in the operating room to fulfill a dual function of preventing the transfer of microorganisms and body fluids from the surgical staff to the patient as well as from patient to staff [10]. These gowns, which are used to protect the surgical team, must have some protective properties. Most of the performance requirements for surgical gowns are clearly stated in the standards. Performance characteristics required from these aprons can be listed as follows:

    • It must be resistant to the penetration of blood and other body fluids as required by its intended use (gown materials should contain protective barriers to minimize the passage of microorganisms, particles and fluids),
    • It should be designed considering liquid repellency, liquid impermeability, air permeability and similar properties,
    • It must be resistant to tears, punctures and abrasionsIt must have an acceptable level of quality (i.e. no holes, tears, etc. in the garment),
    • It must be made of materials suitable for the sterilization method/methods (e.g. radiation, steam and ethylene oxide),
    • It must be resistant to fire (i.e. gowns chosen for use must be consistent with accepted flammability standards that will provide the safest environment for patients and healthcare professionals),
    • It should contribute to maintaining the user’s desired body temperature, that is, have the ability to maintain an isothermal environment for the user,
    • It should not generate dust and fly or allow them to pass through,It should fit tightly but does not restrict movement.
    • In general, it should be free from toxic ingredients and allergens,
    • It should be soft and flexible, light, which does not cause discomfort during use,
    • It must be large enough to allow full closure at the back,
    • It should be of sufficient arm length to prevent exposure of the sleeve outside of the sterile glove,
    • It should have an appropriate cost–benefit ratio, that is, it should not be a priority in the cost selection process,
    • It should also meet some ergonomic requirements. It should be comfortable and functional, have sufficient freedom of movement and adapts to changes in heat and sweat when necessary,
    • Surgical gowns should be ankle-long, the design of the collars and straps should not disturb the person wearing the garment and should not restrict the person’s movements,
    • It should provide high wearing comfort, should not lose its protection performance as a result of repeated washing and sterilization processes,
    • As hospitals only stock in limited quantities, they should be designed to fit a variety of body shapes and sizes with a limited size range,
    • It should help to protect the sterile area required in the operating room
    • It should be easy to donning and doffing without contamination,Whether single or reusable, the garment must be durable enough to maintain its intended useful life,
    • The integrity of the garment must be preserved .
  • It must be resistant to the penetration of blood and other body fluids as required by its intended use (gown materials should contain protective barriers to minimize the passage of microorganisms, particles and fluids),
  • It should be designed considering liquid repellency, liquid impermeability, air permeability and similar properties,
  • It must be resistant to tears, punctures and abrasionsIt must have an acceptable level of quality (i.e. no holes, tears, etc. in the garment),
  • It must be made of materials suitable for the sterilization method/methods (e.g. radiation, steam and ethylene oxide),
  • It must be resistant to fire (i.e. gowns chosen for use must be consistent with accepted flammability standards that will provide the safest environment for patients and healthcare professionals),
  • It should contribute to maintaining the user’s desired body temperature, that is, have the ability to maintain an isothermal environment for the user,
  • It should not generate dust and fly or allow them to pass through,It should fit tightly but does not restrict movement.
  • In general, it should be free from toxic ingredients and allergens,
  • It should be soft and flexible, light, which does not cause discomfort during use,
  • It must be large enough to allow full closure at the back,
  • It should be of sufficient arm length to prevent exposure of the sleeve outside of the sterile glove,
  • It should have an appropriate cost–benefit ratio, that is, it should not be a priority in the cost selection process,
  • It should also meet some ergonomic requirements. It should be comfortable and functional, have sufficient freedom of movement and adapts to changes in heat and sweat when necessary,
  • Surgical gowns should be ankle-long, the design of the collars and straps should not disturb the person wearing the garment and should not restrict the person’s movements,
  • It should provide high wearing comfort, should not lose its protection performance as a result of repeated washing and sterilization processes,
  • As hospitals only stock in limited quantities, they should be designed to fit a variety of body shapes and sizes with a limited size range,
  • It should help to protect the sterile area required in the operating room
  • It should be easy to donning and doffing without contamination,Whether single or reusable, the garment must be durable enough to maintain its intended useful life,
  • The integrity of the garment must be preserved .
  • Each of these characteristics can be measured in one or more “standardized” tests. These standardized tests have been developed by various organizations such as the American Society for Testing and Materials (ASTM; e.g. ASTM F-1670, ASTM F-1671), the American Textile Colorists and Chemists Association, the Health Industry Manufacturers Association, and the National Fire Prevention Association.

    For the structural requirements of surgical gowns, structural analysis is performed first to evaluate the design features of existing products and to characterize the market. Comfort issues with product design are particularly alarming, as comfort is a critical product requirement for surgical gowns. While comfort is somewhat dependent on the permeability and flexibility of the fabric, it has a design effect. Researches done; emphasizes the sustainability of reusable gowns as they are more cost-effective throughout their life cycle in terms of production costs, waste and carbon footprints.

    3. Design analysis of surgical gowns

    Today, different gowns are designed to handle different surgeries. Figure 1 shows the front and the back of a simple disposable surgical gown. The model and cost of aprons vary depending on the amount of protection provided.

    The model characteristics (size-sleeve length, closure properties, etc.) and fabric properties of surgical gowns worn in surgical settings vary according to the characteristics specified in the technical specifications of the Ministry of Health. Includes various surgical gowns.

    Sleeves and cuffs

    It has been observed that reusable surgical gowns are subjected to heavy washing and sterilization steps after each use and various difficulties are encountered in models with hook and loop and snap fasteners. Due to the rough surface of the hook and loop fastener, it is difficult to clean its surface, it can be deformed quickly, and its outer surface can cause linting. In addition, the hook and loop can get caught in the garment during the washing process, which can cause damage. On the other hand, snaps can damage both the garment and the machine during wash and sterilization cycles. If the snap is damaged, it is unlikely that it can be repaired. There is also the possibility that the snap will not provide the desired degree of closure. So there is a risk that the gown will be tight/loose for the user. Since the tie is made from the fabric structure of the gown or a more durable fabric, there are no problems during washing and sterilization. It also ensures a complete closure for people of different sizes and avoids the problem of loose/tight fit.

    3.3 Sizing/fit

    Nowadays, surgical gowns are made with different size options (medium, large, extra-large, etc.) in addition to the universal fit (one size fits all). One-size-fits-all gowns are designed to fit a range of people with different sizes. However, they are usually not efficient for surgeons and are too large. The CDC recommends that multiple gown types and sizes be available in a healthcare facility to ensure adequate coverage for staff.

    3.4 Stitches-seam

    As a result, it can be said that while traditional sewing methods are preferred for reusable gowns, ultrasonic welding gives better results for disposable gowns. Although the seam strength values obtained in traditional sewing are high, the ultrasonic welded seams show higher performance in terms of liquid impermeability.

    4. Fabrics used in surgical gowns

    So, in conclusion, the gown type should be selected according to the different expectations of the users, the different operating environment conditions and the duration of operation. In the study where Behera and Arora made a general assessment, they stated that high density reusable synthetic fibers which are beneficial in terms of comfort and have adequate barrier performance should be preferred for high-risk surgical procedures with bleeding and disposable gowns with low barrier performance and lower comfort performance should be used for less risky procedures.

    5. Environmental effects of reusable and disposable surgical gowns

    The environmental impact of surgical gowns has had an increasing influence on the decision-making process in recent years. As environmental issues have become increasingly important, the environmental impacts of surgical gowns are discussed in this section.

    In summary, both disposable and reusable gowns and drapes have an impact on the environment. However, the existing literature on comparative studies for surgical gowns and drapes generally concludes that reusable textiles result in a lower environmental impact than disposable textiles. Comparing the two systems above, reusable gowns have advantages over disposable gowns in terms of natural resource consumption, waste generation, emissions and sustainability.

    6. Shortcomings in available gowns, the design of knitted surgical gowns and recommendations

    Garments used in the surgical environment are available in the market as single-use and multi-use. As mentioned before, reusable surgical garments are more preferable in terms of tensile strength, liquid absorption and bacterial protection performance. At the same time, they provide more comfort to the user because they are breathable. However, although the procurement processes of single and reusable products are simultaneous, the reusability of reusable products makes these products more advantageous due to the increasing needs in the field of health in today’s conditions.

    Sun Tekstil San. ve Tic. A.S. and Ekoten Tekstil San. ve Tic. A.S. in the study carried out by the companies within the scope of cooperation; the development of knitted fabric structures with different constructions produced from functional fiber structures, which will replace the woven fabrics used in the production of reusable surgical gowns according to the state of the art, that provide high wearing comfort in accordance with different types of surgical operations, do not lose their protection performance as a result of repeated washing and sterilization processes, and this reusable surgical gowns have been produced using functional fabric structures. Surgical garments have been developed by using knitted fabric structures in order to increase wearing comfort, breathability and comfort features. Thanks to the knitted fabric of the fabric used in clothing, it has an advantage over woven fabrics in terms of lightness and flexibility. The use of knitted fabric structures in the production of surgical clothing and the use of knitted fabric structures developed in different constructions from functional fibers in different parts of the garment have created the innovative aspect of the study.

    With this study, knitted fabrics of different constructions were developed by using different fiber structures, thus the production of surgical garments with improved protection and comfort properties was achieved. In the production of fabrics; cotton, polyester, cotton-polyester, cotton-polyester-carbon fiber blends and nilite, coolmax, tencel, etc. fibers are used to increase the comfort feature. Antistatic thread is used to prevent static electricity of the fabrics. With these yarn raw materials, fabrics with a single jersey knit structure were obtained and the characteristics of these fabric structures regarding performance and comfort were compared with each other. As a result of the tests, it has been observed that 100% cotton fabric gives worse results than other fabrics in relation to moisture transmission, thermal resistance and size stability in washing. The rubbing fastness and pilling values of the tencel/cotton blend fabric are very low in terms of usage. When the results were examined, it was seen that 100% Coolmax and 100% Nilit fabrics are advantageous in terms of comfort properties such as moisture transmission and thermal resistance. In addition, the results of moisture transmission, bursting strength and size stability in washing of 100% polyester and 99% -1% polyester-carbon fabrics were better than other fabrics. It is seen that it has the best results after 100% Coolmax and 100% Nilit fabrics in terms of thermal resistance. Although the test results of the micro-polyester fabric seem good, due to its fast moisture absorbing structure, its moisture transmission properties are quite low. Dimension change properties of 65–34–1% polyester-cotton-carbon blended fabric in washing gave worse results than Nilit, Coolmax, polyester and polyester-carbon fabrics. Comfort features are very important in surgical garments. In the literature, the expected value for comfort from fabrics in terms of moisture management performance properties is above 0.4. For this reason, it has been observed that 100% Coolmax, 100% Nilit, 100% Polyester and 99–1% polyester-carbon fabrics provide these values, while other fabrics are poor in terms of moisture management in terms of comfort. For this reason, fabric structures with these 4 different raw materials have been selected for lamination.

    Multiple film structures (PTFE, microporous PU film, hydrophilic PU film and ether-based polyester film) were used to use the surgical gowns obtained with the study for multiple purposes. The advantages provided by each film structure in terms of its technical properties also vary. In order to make the barrier properties of the film structures more effective, dot lamination studies were carried out with reactive polyurethane adhesive as 2-layer (Fabric + Film) and 3-layer (Fabric + Film + Fabric) together with the fabric structures of the films. Due to the insufficient test and sterilization resistance of the 2-layer structures, the lamination studies of the 3-layer structures were continued. However, different performance criteria were met with the different film structures used in the studies. Adhesives with high resistance to sterilization were preferred in studies on film structures with different performance properties.

    After lamination processes, antibacterial finishing process to give antibacterial properties to the fabrics, water repellent finishing that is resistant to washing at high temperatures to give water repellency and membrane coating to increase the protection feature.

    In order to determine the physical-mechanical, protection and comfort properties of the fabrics produced; thickness, liquid repellency, liquid impermeability, bursting strength, linting, porosity and microorganism permeability were investigated. At the same time, bending strength, air permeability, thermal resistance and water vapor resistance tests were applied to determine the clothing comfort properties of the fabrics. The sterilization strength of the products obtained was also examined. These tests to be applied to fabric structures also shed light on the tests applied in EN 13795 and PB70 standards, which are a requirement for surgical gowns.

    Along with these; the designs of the existing surgical gowns were examined, and in line with the interviews with surgeons, new designs were created for different types of operations (intense fluid, low fluid, etc.), that can be easily put on and taken off and provide body movement comfort.

    It has been observed that the 3-layer laminated fabric structure obtained with the knitted fabric design and film lamination within the scope of the study has fulfilled both the comfort and protection parameters with the test studies. In the light of this information, it was decided to use a film laminated knitted fabric structure in the entire surgical gown. In this way, the protection and barrier feature of the user is not only specific to the body and arms of the user, but a protection that covers the whole body will be provided. The fact that the fabric structure is extremely light in weight will not create a weight on the user in terms of comfort.

    Surgical garments developed; It will be used as personal protection equipment to minimize the transmission of viruses to patients and the exposure of healthcare personnel to pathogens, especially blood-borne pathogens. Within this scope, there is no product in which knitted fabric structures are used in the production of surgical garments in the international market. In this respect and according to the advantages it provides compared to reusable woven fabrics, surgical garments have been obtained from knitted fabric that stands out in the market.

     

    6. Shortcomings in available gowns, the design of knitted surgical gowns and recommendations

    Garments used in the surgical environment are available in the market as single-use and multi-use. As mentioned before, reusable surgical garments are more preferable in terms of tensile strength, liquid absorption and bacterial protection performance. At the same time, they provide more comfort to the user because they are breathable. However, although the procurement processes of single and reusable products are simultaneous, the reusability of reusable products makes these products more advantageous due to the increasing needs in the field of health in today’s conditions.

    Sun Tekstil San. ve Tic. A.S. and Ekoten Tekstil San. ve Tic. A.S. in the study carried out by the companies within the scope of cooperation; the development of knitted fabric structures with different constructions produced from functional fiber structures, which will replace the woven fabrics used in the production of reusable surgical gowns according to the state of the art, that provide high wearing comfort in accordance with different types of surgical operations, do not lose their protection performance as a result of repeated washing and sterilization processes, and this reusable surgical gowns have been produced using functional fabric structures. Surgical garments have been developed by using knitted fabric structures in order to increase wearing comfort, breathability and comfort features. Thanks to the knitted fabric of the fabric used in clothing, it has an advantage over woven fabrics in terms of lightness and flexibility. The use of knitted fabric structures in the production of surgical clothing and the use of knitted fabric structures developed in different constructions from functional fibers in different parts of the garment have created the innovative aspect of the study.

    With this study, knitted fabrics of different constructions were developed by using different fiber structures, thus the production of surgical garments with improved protection and comfort properties was achieved. In the production of fabrics; cotton, polyester, cotton-polyester, cotton-polyester-carbon fiber blends and nilite, coolmax, tencel, etc. fibers are used to increase the comfort feature. Antistatic thread is used to prevent static electricity of the fabrics. With these yarn raw materials, fabrics with a single jersey knit structure were obtained and the characteristics of these fabric structures regarding performance and comfort were compared with each other. As a result of the tests, it has been observed that 100% cotton fabric gives worse results than other fabrics in relation to moisture transmission, thermal resistance and size stability in washing. The rubbing fastness and pilling values of the tencel/cotton blend fabric are very low in terms of usage. When the results were examined, it was seen that 100% Coolmax and 100% Nilit fabrics are advantageous in terms of comfort properties such as moisture transmission and thermal resistance. In addition, the results of moisture transmission, bursting strength and size stability in washing of 100% polyester and 99% -1% polyester-carbon fabrics were better than other fabrics. It is seen that it has the best results after 100% Coolmax and 100% Nilit fabrics in terms of thermal resistance. Although the test results of the micro-polyester fabric seem good, due to its fast moisture absorbing structure, its moisture transmission properties are quite low. Dimension change properties of 65–34–1% polyester-cotton-carbon blended fabric in washing gave worse results than Nilit, Coolmax, polyester and polyester-carbon fabrics. Comfort features are very important in surgical garments. In the literature, the expected value for comfort from fabrics in terms of moisture management performance properties is above 0.4. For this reason, it has been observed that 100% Coolmax, 100% Nilit, 100% Polyester and 99–1% polyester-carbon fabrics provide these values, while other fabrics are poor in terms of moisture management in terms of comfort. For this reason, fabric structures with these 4 different raw materials have been selected for lamination.

    Multiple film structures (PTFE, microporous PU film, hydrophilic PU film and ether-based polyester film) were used to use the surgical gowns obtained with the study for multiple purposes. The advantages provided by each film structure in terms of its technical properties also vary. In order to make the barrier properties of the film structures more effective, dot lamination studies were carried out with reactive polyurethane adhesive as 2-layer (Fabric + Film) and 3-layer (Fabric + Film + Fabric) together with the fabric structures of the films. Due to the insufficient test and sterilization resistance of the 2-layer structures, the lamination studies of the 3-layer structures were continued. However, different performance criteria were met with the different film structures used in the studies. Adhesives with high resistance to sterilization were preferred in studies on film structures with different performance properties.

    After lamination processes, antibacterial finishing process to give antibacterial properties to the fabrics, water repellent finishing that is resistant to washing at high temperatures to give water repellency and membrane coating to increase the protection feature.

    In order to determine the physical-mechanical, protection and comfort properties of the fabrics produced; thickness, liquid repellency, liquid impermeability, bursting strength, linting, porosity and microorganism permeability were investigated. At the same time, bending strength, air permeability, thermal resistance and water vapor resistance tests were applied to determine the clothing comfort properties of the fabrics. The sterilization strength of the products obtained was also examined. These tests to be applied to fabric structures also shed light on the tests applied in EN 13795 and PB70 standards, which are a requirement for surgical gowns.

    Along with these; the designs of the existing surgical gowns were examined, and in line with the interviews with surgeons, new designs were created for different types of operations (intense fluid, low fluid, etc.), that can be easily put on and taken off and provide body movement comfort.

    It has been observed that the 3-layer laminated fabric structure obtained with the knitted fabric design and film lamination within the scope of the study has fulfilled both the comfort and protection parameters with the test studies. In the light of this information, it was decided to use a film laminated knitted fabric structure in the entire surgical gown. In this way, the protection and barrier feature of the user is not only specific to the body and arms of the user, but a protection that covers the whole body will be provided. The fact that the fabric structure is extremely light in weight will not create a weight on the user in terms of comfort.

    Surgical garments developed; It will be used as personal protection equipment to minimize the transmission of viruses to patients and the exposure of healthcare personnel to pathogens, especially blood-borne pathogens. Within this scope, there is no product in which knitted fabric structures are used in the production of surgical garments in the international market. In this respect and according to the advantages it provides compared to reusable woven fabrics, surgical garments have been obtained from knitted fabric that stands out in the market.

    6. Shortcomings in available gowns, the design of knitted surgical gowns and recommendations

    Garments used in the surgical environment are available in the market as single-use and multi-use. As mentioned before, reusable surgical garments are more preferable in terms of tensile strength, liquid absorption and bacterial protection performance. At the same time, they provide more comfort to the user because they are breathable. However, although the procurement processes of single and reusable products are simultaneous, the reusability of reusable products makes these products more advantageous due to the increasing needs in the field of health in today’s conditions.

    Sun Tekstil San. ve Tic. A.S. and Ekoten Tekstil San. ve Tic. A.S. in the study carried out by the companies within the scope of cooperation; the development of knitted fabric structures with different constructions produced from functional fiber structures, which will replace the woven fabrics used in the production of reusable surgical gowns according to the state of the art, that provide high wearing comfort in accordance with different types of surgical operations, do not lose their protection performance as a result of repeated washing and sterilization processes, and this reusable surgical gowns have been produced using functional fabric structures. Surgical garments have been developed by using knitted fabric structures in order to increase wearing comfort, breathability and comfort features. Thanks to the knitted fabric of the fabric used in clothing, it has an advantage over woven fabrics in terms of lightness and flexibility. The use of knitted fabric structures in the production of surgical clothing and the use of knitted fabric structures developed in different constructions from functional fibers in different parts of the garment have created the innovative aspect of the study.

    With this study, knitted fabrics of different constructions were developed by using different fiber structures, thus the production of surgical garments with improved protection and comfort properties was achieved. In the production of fabrics; cotton, polyester, cotton-polyester, cotton-polyester-carbon fiber blends and nilite, coolmax, tencel, etc. fibers are used to increase the comfort feature. Antistatic thread is used to prevent static electricity of the fabrics. With these yarn raw materials, fabrics with a single jersey knit structure were obtained and the characteristics of these fabric structures regarding performance and comfort were compared with each other. As a result of the tests, it has been observed that 100% cotton fabric gives worse results than other fabrics in relation to moisture transmission, thermal resistance and size stability in washing. The rubbing fastness and pilling values of the tencel/cotton blend fabric are very low in terms of usage. When the results were examined, it was seen that 100% Coolmax and 100% Nilit fabrics are advantageous in terms of comfort properties such as moisture transmission and thermal resistance. In addition, the results of moisture transmission, bursting strength and size stability in washing of 100% polyester and 99% -1% polyester-carbon fabrics were better than other fabrics. It is seen that it has the best results after 100% Coolmax and 100% Nilit fabrics in terms of thermal resistance. Although the test results of the micro-polyester fabric seem good, due to its fast moisture absorbing structure, its moisture transmission properties are quite low. Dimension change properties of 65–34–1% polyester-cotton-carbon blended fabric in washing gave worse results than Nilit, Coolmax, polyester and polyester-carbon fabrics. Comfort features are very important in surgical garments. In the literature, the expected value for comfort from fabrics in terms of moisture management performance properties is above 0.4. For this reason, it has been observed that 100% Coolmax, 100% Nilit, 100% Polyester and 99–1% polyester-carbon fabrics provide these values, while other fabrics are poor in terms of moisture management in terms of comfort. For this reason, fabric structures with these 4 different raw materials have been selected for lamination.

    Multiple film structures (PTFE, microporous PU film, hydrophilic PU film and ether-based polyester film) were used to use the surgical gowns obtained with the study for multiple purposes. The advantages provided by each film structure in terms of its technical properties also vary. In order to make the barrier properties of the film structures more effective, dot lamination studies were carried out with reactive polyurethane adhesive as 2-layer (Fabric + Film) and 3-layer (Fabric + Film + Fabric) together with the fabric structures of the films. Due to the insufficient test and sterilization resistance of the 2-layer structures, the lamination studies of the 3-layer structures were continued. However, different performance criteria were met with the different film structures used in the studies. Adhesives with high resistance to sterilization were preferred in studies on film structures with different performance properties.

    After lamination processes, antibacterial finishing process to give antibacterial properties to the fabrics, water repellent finishing that is resistant to washing at high temperatures to give water repellency and membrane coating to increase the protection feature.

    In order to determine the physical-mechanical, protection and comfort properties of the fabrics produced; thickness, liquid repellency, liquid impermeability, bursting strength, linting, porosity and microorganism permeability were investigated. At the same time, bending strength, air permeability, thermal resistance and water vapor resistance tests were applied to determine the clothing comfort properties of the fabrics. The sterilization strength of the products obtained was also examined. These tests to be applied to fabric structures also shed light on the tests applied in EN 13795 and PB70 standards, which are a requirement for surgical gowns.

    Along with these; the designs of the existing surgical gowns were examined, and in line with the interviews with surgeons, new designs were created for different types of operations (intense fluid, low fluid, etc.), that can be easily put on and taken off and provide body movement comfort.

    It has been observed that the 3-layer laminated fabric structure obtained with the knitted fabric design and film lamination within the scope of the study has fulfilled both the comfort and protection parameters with the test studies. In the light of this information, it was decided to use a film laminated knitted fabric structure in the entire surgical gown. In this way, the protection and barrier feature of the user is not only specific to the body and arms of the user, but a protection that covers the whole body will be provided. The fact that the fabric structure is extremely light in weight will not create a weight on the user in terms of comfort.

    Surgical garments developed; It will be used as personal protection equipment to minimize the transmission of viruses to patients and the exposure of healthcare personnel to pathogens, especially blood-borne pathogens. Within this scope, there is no product in which knitted fabric structures are used in the production of surgical garments in the international market. In this respect and according to the advantages it provides compared to reusable woven fabrics, surgical garments have been obtained from knitted fabric that stands out in the market.

    6. Shortcomings in available gowns, the design of knitted surgical gowns and recommendations

    Garments used in the surgical environment are available in the market as single-use and multi-use. As mentioned before, reusable surgical garments are more preferable in terms of tensile strength, liquid absorption and bacterial protection performance. At the same time, they provide more comfort to the user because they are breathable. However, although the procurement processes of single and reusable products are simultaneous, the reusability of reusable products makes these products more advantageous due to the increasing needs in the field of health in today’s conditions.

    Sun Tekstil San. ve Tic. A.S. and Ekoten Tekstil San. ve Tic. A.S. in the study carried out by the companies within the scope of cooperation; the development of knitted fabric structures with different constructions produced from functional fiber structures, which will replace the woven fabrics used in the production of reusable surgical gowns according to the state of the art, that provide high wearing comfort in accordance with different types of surgical operations, do not lose their protection performance as a result of repeated washing and sterilization processes, and this reusable surgical gowns have been produced using functional fabric structures. Surgical garments have been developed by using knitted fabric structures in order to increase wearing comfort, breathability and comfort features. Thanks to the knitted fabric of the fabric used in clothing, it has an advantage over woven fabrics in terms of lightness and flexibility. The use of knitted fabric structures in the production of surgical clothing and the use of knitted fabric structures developed in different constructions from functional fibers in different parts of the garment have created the innovative aspect of the study.

    With this study, knitted fabrics of different constructions were developed by using different fiber structures, thus the production of surgical garments with improved protection and comfort properties was achieved. In the production of fabrics; cotton, polyester, cotton-polyester, cotton-polyester-carbon fiber blends and nilite, coolmax, tencel, etc. fibers are used to increase the comfort feature. Antistatic thread is used to prevent static electricity of the fabrics. With these yarn raw materials, fabrics with a single jersey knit structure were obtained and the characteristics of these fabric structures regarding performance and comfort were compared with each other. As a result of the tests, it has been observed that 100% cotton fabric gives worse results than other fabrics in relation to moisture transmission, thermal resistance and size stability in washing. The rubbing fastness and pilling values of the tencel/cotton blend fabric are very low in terms of usage. When the results were examined, it was seen that 100% Coolmax and 100% Nilit fabrics are advantageous in terms of comfort properties such as moisture transmission and thermal resistance. In addition, the results of moisture transmission, bursting strength and size stability in washing of 100% polyester and 99% -1% polyester-carbon fabrics were better than other fabrics. It is seen that it has the best results after 100% Coolmax and 100% Nilit fabrics in terms of thermal resistance. Although the test results of the micro-polyester fabric seem good, due to its fast moisture absorbing structure, its moisture transmission properties are quite low. Dimension change properties of 65–34–1% polyester-cotton-carbon blended fabric in washing gave worse results than Nilit, Coolmax, polyester and polyester-carbon fabrics. Comfort features are very important in surgical garments. In the literature, the expected value for comfort from fabrics in terms of moisture management performance properties is above 0.4. For this reason, it has been observed that 100% Coolmax, 100% Nilit, 100% Polyester and 99–1% polyester-carbon fabrics provide these values, while other fabrics are poor in terms of moisture management in terms of comfort. For this reason, fabric structures with these 4 different raw materials have been selected for lamination.

    Multiple film structures (PTFE, microporous PU film, hydrophilic PU film and ether-based polyester film) were used to use the surgical gowns obtained with the study for multiple purposes. The advantages provided by each film structure in terms of its technical properties also vary. In order to make the barrier properties of the film structures more effective, dot lamination studies were carried out with reactive polyurethane adhesive as 2-layer (Fabric + Film) and 3-layer (Fabric + Film + Fabric) together with the fabric structures of the films. Due to the insufficient test and sterilization resistance of the 2-layer structures, the lamination studies of the 3-layer structures were continued. However, different performance criteria were met with the different film structures used in the studies. Adhesives with high resistance to sterilization were preferred in studies on film structures with different performance properties.

    After lamination processes, antibacterial finishing process to give antibacterial properties to the fabrics, water repellent finishing that is resistant to washing at high temperatures to give water repellency and membrane coating to increase the protection feature.

    In order to determine the physical-mechanical, protection and comfort properties of the fabrics produced; thickness, liquid repellency, liquid impermeability, bursting strength, linting, porosity and microorganism permeability were investigated. At the same time, bending strength, air permeability, thermal resistance and water vapor resistance tests were applied to determine the clothing comfort properties of the fabrics. The sterilization strength of the products obtained was also examined. These tests to be applied to fabric structures also shed light on the tests applied in EN 13795 and PB70 standards, which are a requirement for surgical gowns.

    Along with these; the designs of the existing surgical gowns were examined, and in line with the interviews with surgeons, new designs were created for different types of operations (intense fluid, low fluid, etc.), that can be easily put on and taken off and provide body movement comfort.

    more hintsread herepop over to this web-site

    It has been observed that the 3-layer laminated fabric structure obtained with the knitted fabric design and film lamination within the scope of the study has fulfilled both the comfort and protection parameters with the test studies. In the light of this information, it was decided to use a film laminated knitted fabric structure in the entire surgical gown. In this way, the protection and barrier feature of the user is not only specific to the body and arms of the user, but a protection that covers the whole body will be provided. The fact that the fabric structure is extremely light in weight will not create a weight on the user in terms of comfort.

    Surgical garments developed; It will be used as personal protection equipment to minimize the transmission of viruses to patients and the exposure of healthcare personnel to pathogens, especially blood-borne pathogens. Within this scope, there is no product in which knitted fabric structures are used in the production of surgical garments in the international market. In this respect and according to the advantages it provides compared to reusable woven fabrics, surgical garments have been obtained from knitted fabric that stands out in the market.

     
     
     
     
     
     
     
     

    3 Responses

    Add a Comment

    Your email address will not be published. Required fields are marked *